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The spectral collocation method is used for numerical solution of the Fokker—
Planck equation with nonlinear integro-differential coulomb collisional operator. The
spectral collocation method in general gives superior results to the usually employed
finite difference method approximation. High order approximation of the integro-
differential operator by the spectral collocation is able to provide highly accurate
results on sparse grids. Approximation of the boundary conditions of the problem
is very straightforward and natural. The method is also capable of easily accounting
for the physically important conservation properties of the system. In this article
the details of the numerical implementation of the Fokker—Planck equation solver
with Coulomb collisional operator are discussed. Some test results are presented and
certain limitations of the implementation are discussed. The method is applied to the
problem of plasma heating by superthermal radiation. The self-similar solution is
obtained for this case. © 2000 Academic Press
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1. INTRODUCTION

Detailed knowledge of the charged patrticle distribution function is very important |
many areas of plasma physics. It is quite common in applications to assume that the r
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body of the distribution function is a thermal equilibrium local Maxwellian function. Whel
the deviations of the distribution function from Maxwellian are small an appropriate i
earization procedure can be applied. This approach simplifies description of the pla:
significantly. Superthermal electrons in the Earth’s plasmasphere, for instance, usually
described by including the linearized Coulomb collisional operator [10, 11] where it
assumed that high energy particles are scattered only by the fixed background thermal
ulation. However, in a great number of applications large deviations from local Maxwelli
can be developed. For example, in space plasma physics it is common to consider th
sponse of the plasma to the external forces in a collisionless regime. This means tha
characteristic times of the processes in the plasma are much shorter than normal collis
times calculated assuming that distributions are local Maxwellian functions. Neverthel
collisions are important on the longer time scales and are capable of completely redefi
the stationary state of the plasma. On the other hand the coulomb collisional relaxation
is well known to be highly sensitive to where in the velocity phase space the deviation fr
Maxwellian occurs. For example, the response of low energy particles is much faster t
relaxation of high energy particles. In fact, the local coulomb relaxation rate is singular
v=0andthusinasense for low energy particles the coulomb collision is always a domin
process.

Collisions of the charged particles in plasma are described by a complicated nonlir
(quadratic in distribution function) integro—differential equation [17]. The rate of the cc
lisional relaxation is quite sensitive to the local, in the velocity phase space, deviation:
the distribution function from equilibrium Maxwellian. The fine structure of the relaxatio
often becomes important in application problems. For instance, the patrticle loss rates o
trapped patrticles in the fusion devices, or in natural magnetic confinement of the plane
magnetospheres, are very sensitive to the local gradients of the distribution function in
velocity space. It is therefore important to have a tools for the exact description of 1
Coulomb collision effects.

The finite difference approximation of the full Coulomb collisional operator was deve
oped, for example, in [12]. Special techniques have been developed recently to improve
accuracy of finite difference approximations [1, 2, 5, 6, 18]. The Legendre series exp
sion, originally proposed in [17] for the reduction of the collisional operator to the fori
of Fokker—Planck operator, was used to represent the angular dependencies in a sph
system of coordinates in the velocity space. This fact is a main motivation for the imp
mentation of the collisional operator by the spectral collocation method [3, 7]. In additi
to being consistent with the Legendre polynomial expansion of expressions for the Foki
Planck coefficients, the spectral collocation method generally provides superior high or
approximation and allows us to obtain highly accurate results on much sparser grids 1
the finite difference methods. There are of course certain limitations of the method rele
for approximation of the collisional operator which we would like to discuss in this repa
along with the details of implementation.

2. THE FOKKER-PLANCK OPERATOR

We consider characteristic time scales much longer then gyroperiod and character
spatial scales much larger than gyroradius of the particles. Under these conditions the kil
equation reduces to the so-called guiding center approximation which allows us to excl
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azimuthal angle dependence in the kinetic equation [4]

af p af« 1-£23InBaf
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where distribution functiorf (v, &, s, t) of the plasma speciesdepends upon the velocity
v, cosine of the pitch-anglg spatial variabls along the magnetic field line with the strength
B, as well as timé. The second term in the left hand side describes convection, and t
third term is responsible for magnetic “focusing” in a nonhomogeneous magnetic field c
to the conservation of the magnetic moment, or the first adiabatic invariant of the partic
The operator in the right hand side includes terms in addition to the simple transport effe
In the present paper we will consider in detail only the coulomb collisional operator in |
exact form as derived in [17].

Equation (1) can be transformed into the conservation form by the change of depenc
variable according td* = F*B
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Here we took into account that the collsional operatds the quadratic functional of the
distribution function.

The expression for the coulomb collisional operator in the appropriate variables w
given in [17]. We will use it in its equivalent conservation form as
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Here, collisional strength is defined by
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and Fokker—Planck coefficients can be expressed as
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using Rosenbluth’s potentiadg (v) andh* (v)

ZZ
GY(V) = Zﬁ: Z—g In Apd’ (V) (10)
g’ (v) = / dV V)V — V| (11)
~ m, +m
HY(v) = zﬂ: Tﬁﬂ zg In Aggh? (v) (12)
hf(v) = /d3v’f’3(v’)|v VL (13)

The Rosenbluth’s potentials integral definitions (11) and (13) are equivalent to the Pois
problems

AP =2hf AN = —4nfh (14)

with the distribution function serving as a source. In spherical velocity coordinates t
Laplacian is

— el 2l ae
T 2o v UZBS 0&

Thus the differential representation (14) immediately shows partial cancellation of term:
(6) and (9) where only

Z
Ha(V) = Z 22 |n Aalghﬂ(V)
B

will appear in coefficient®, and D

IH” 1—-£20H
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In fact the most complicated entries of the Fokker—Planck coefficients have been reduce
a simple functional of potentidi* only. Thus “friction” in velocity space has a relatively
simple form in terms of Rosenbluth potentials. This fact for instance has been overloo
in [12], in their finite difference implementation of the Coulomb collisional operator. Sirr
plification is considerable and obviously helps to avoid quite a large amount of unneces:
extra calculations. Moreover, the error of nonperfect numerical cancellation can potenti
contribute to the round-off error buildup in the algorithm.
Equation (1) for each species has to be solved together with initial conditions

s, v, &t =0)=Yj(s, v, §) (16)

and is subject to boundary conditions at magnetically conjugate points in the atmospl
where the main source of energetic photoelectrons is operating

f%s=—-Sv, &) =Vi@E1), if &£ >0, a7
f¥(s=+Sv,&,t) =¥*(v,&,1), if & <O. (18)
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We choose some characteristic velocity of the probl&mihich normally will be equal
to the highest velocity of the particle used in simulations on a bounded interval, so t
v € [0, 2V]. The characteristic spatial length is natural to set equal to the ler@ti the
magnetic tube line from one hemisphere to another, frofto S. This choice defines the
characteristic time of the problemas

28

TZW.

We change to dimensionless variables in (1)

t v
t— —, v—> — — 1 S— —.

T A

nln

This particular scaling is motivated by the spectral collocation method we use for d
cretization of the problem is, v, and&, which we describe in some detail in the next
section.

Equation (1) is approximated by the spectral collocation method [7].

2.1. Spectral Collocation

The physical domain is mapped inte, 1], the region where normally bounded orthog-
onal polynomials are defined. The set of orthogonal polynomials is chosen [7, 3]. We v
be using Legendre polynomials,(x) simply because the pitch angle variable is treate
in a more simple way in the Coulomb collisional operator in that case. Other sets can
used for spatial and velocity variables. The grid is defined at the so-called Gauss—Lob
points. Given a degree of the approximating polynoriidhe Gauss—Lobatto poinig for
i =0...N are defined adl — 1 zeros of the derivative df \ (x) plus two end points-1
and 1.

Functionp(x) is approximated as thidth order polynomial

N
pOO = > kLX) (19)
k=0

The ¢(’s are called the Fourier coefficients pfx) with respect to the orthogonal basis
Lk(x). If we know the function’s valueg; = p(n;) at the Gauss—Lobatto points, there is
a one-to-one correspondence between the sgtafd p;. The Gauss—Lobatto weights
can be defined to approximate the integral

1 N
/1 PO dx =" pjw;. (20)
_ ~

This is the well knownNth order Gaussian quadrature formula. The important fact abo
this approximation can be proved: formula (20) is true (exact) for any polyngmugl of
the order less than\2 — 1.

This formula is the basis for high accuracy numerical integration and is widely used
numerical computations. The formula (20) can be used for computing Rosenbluth potenti
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For differential equations approximation a similar high accuracy representation for
derivative can be obtained. From (19)

N N
=Y ol =Y oL (21)
k=0 k=0

This can be transformed into physical space in the form

N
PG =Y dijp(r)). (22)

i=0

Thus the derivative operator in the vector spagéds equivalent to matrix multiplication.
Derivative matrix entriesl; are completely defined by the type and degree of orthogon
polynomial. It is important that formula (22) gives exact derivatives at the node points |
any p(x) which is a polynomial of degree less thiin

Using (22) on the nonuniform grid defined by Gauss—Lobatto points we can constr
high accuracy approximation for integro-differential operators. The resulting linear syst
is dense. As a result direct (LU decomposition) or iterative methods must be used
solving the system of equations fok's. However, due to the relative high accuracy of
the approximation the number of nodes can be significantly reduced in comparison to
conventional finite difference methods.

The Gauss—Lobatto grid has a nice property for our problem: it is denser to the ends of
interval, at|x| =1, where in the case of the pitch angle we expect the distribution functic
of untrapped particles to concentrate due to the highly nonuniform magnetic field. In-
case of the spatial variable along the magnetic field tube, grid points tend to concentra
the lower altitudes, where most of the interesting physics is happening.

The common problem for the spectral method is due to the fact that discontinuous fu
tions in general are poorly represented by the truncated Fourier series (19). This prog
is known as a Gibbs phenomenon: oscillations amplitude of the approximating polynon
in the neighborhood of the point of discontinuity stays bounded; it does not decrease
N increases. This problem is not serious for the parabolic systems which normally ten
produce smooth solutions even for initially discontinuous functions. It was shown that e\
for hyperbolic systems the Gibbs phenomenon is not a matter of great concern. It does
the change the dynamics of the solution but is a result of an attempt to accurately repre
discontinuity at the given discretization level. Discontinuity is represented by the two—th
points on the grid and is much better resolved than by normal finite difference (FD) schet
[12]. The FD approximations tend to introduce numerical diffusion and viscosity which h
an irreversible effect on the long-term solution.

The Gibbs phenomenon can be excluded from the solution for cosmetic purposes of
final solution for better visualization of the result, or it can be done all the way along tl
solution process. The natural way to do this is to filter out the aliased high harmonics
the solution. Note however that sometimes this can have an undesirable effect. As aresl
filtering not only the oscillation amplitude is reduced but also the width of the discontinui
is increased. Thus, for the problems where true location of the discontinuity and the eff
of the width of the transition are important it may be important to keep all frequency spec
unchanged.
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2.2. Time Discretization

For the time discretization, the time splitting or fractional steps method [16] is used. \
discretize each operator in space, pitch angle, and particle velocity separately and for ¢
time step advance distribution function in time using a separate operator sequentially.
modularized approach is very flexible in the sense of adding new physics into the syst
The main disadvantage is that even if each operator separately is approximated by a s
scheme, we cannot allow very large time steps. Only in the limit of small time steps one «
expect that results of sequential time steps to be close to the actual evolution of the sys
In the case of nonlinear problems, as in the approximation of the Coulomb collisior
operator, large time steps can even destabilize the resulting scheme. This disadvanta
our approach is greatly compensated for by the high accuracy approximation of all
operators involved.

One full time step includes four operations: calculation of the current values for t
Fokker—Planck coefficients and three ADI steps accounting for evolution in space, veloc
and angle variables. We give details of implementation for each step below.

2.2.1. Calculation of Fokker—Planck coefficient§or evaluation of the diffusion coef-
ficients as suggested in [17] we use expansion in terms of Legendre polynomials in the
angle variable

f@. &) =) fa)Pa®), (23)
n=0

9w, ) =D _ G@)Pa(f), (24)
n=0

hw,£) = ha()Pa(8). (25)
n=0

Calculation of spectral coefficients in (23)

2n+1

fa(v) = 2

1
[t erpaeas (26)
-1
takes advantage of high accuracy Guass—Lobatto quadrature according to (20).

After using identity (27)

d 2, AR ()
¥(1—€) de

the Poisson equations (11) and (13) and the boundary conditions become

+n(n+1)P.(§) =0, (27)

9 ,0hy
—v— — —Dhy=-—f°
8UU E n(n )hn ns

ohn
ov

=0,
v=0

N (28)
ho(v =0) = / f (uWuduy,
0

hfv=0 =0, if n#0
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9 ,00n
— v — — —1gn = 2h
avv 9 n(n )Gh n
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=0,
ov

v=0

. (29)
go(v=0)=/ Fuuddu,
0

Oh(v=0)=0, if n#£0.
These equations can be solved analytically using Green’s function of the linear differer

operator in (27) and (28) as suggested in [17], and this procedure was followed in fir
difference implementation [12]

A v un+2 00 Un
45 v unt? 2n — 1 u?
= f 1- —
On(v) 1—4n2 [/0 dufh(W ph-1 ( 2n+3v2)
o0 " 2n — 12
+/U dufn(u)un_3 (1— 2n+3u?ﬂ . (31)

The numerical evaluation of the Rosenbluth potentiglsand g, according to Green’s
function solutions (30) and (31), however, bears a large numerical error. This can be cle
seen, for example, in the case- 0 whenhy degenerates into a one-sided indefinite integra
fromu =0 tou = v and for smallb only very few points on the grid are used for evaluation
of the integral. As a result high order Gaussian quadrature formulas become unusable
lower order integration schemes lead to the lose of spectral accuracy provided by spe
collocation. Therefore, instead of numerical evaluation of integrals (30) and (31), we sc
directly boundary value problems (28) and (29) by the spectral collocation method, wh
ensures spectral accuracy. In terms of efficiency of calculations in the case of solving |
and (29) by direct matrix inversion, the number of arithmetic operations is of the same or
as numerical quadrature for evaluation of integrals (30) and (31). There are also potent
more efficient methods for solving differential equations (28) and (29); for example, iterati
methods can be much more efficient on large grids. At the present time only a direct solu
(by LU decomposition) has been implemented.

In our algorithm the differential operator in the left hand sides of (28) and (29) includir
the boundary conditions is approximated as a matrix multiplication operator using f
spectral collocation method described above. The inverse of the matrix is calculate
the initialization stage of the program and stored in the memory. Thus the calculation
the spectral coefficients of the Rosenbluth potentials requires only matrix multiplicati
for each harmonia. In order to obtain the Fokker—Planck coefficients according to (5
(7), (8), (15) the differentiation over velocity is done numerically using the spectral
collocation derivative matrix. The differentiation over velocity can be done before or aftert
calculation of the inverse Legendre transform according to (23). Clearly it is more efficie
to differentiate the potential once in velocity space, rather than to perfalifferentiations
of the spectral coefficientg,. As for the differentiation ir, this can be done analytically
before the inverse transform using the properties of the Legendre polynomials given by |
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and
2, dR(@) _ n(n+1 B
1-&9 dE  2n+1 (Pn-1(8) — &Pn11(8)), (32)
and
@n+ DEP(E) = N+ DPry1(8) + nP_1(8). (33)

This step again avoids extra computational effort related to the numerical differentiat
of the Fokker—Planck coefficients with respecttim the algorithm. The numerical imple-
mentation demonstrated that this procedure gives a highly accurate representation o
Fokker—Planck coefficients.

The update of the coulomb collision Fokker—Planck coefficients using current values
the distribution function is one of the most computationally intensive parts of the algorith
The whole procedure however is nonrecursive and all stages are basically representec
matrix multiplication. This makes the algorithm highly vectorizable.

In the simplest time factorization scheme these coefficients are used throughout all
fractional time steps. This is justified by the observation that normally diffusion coefficier
change much slower than the distribution function itself [13]. This limitation is dictated k
the high computational cost of the diffusion coefficients evaluation.

2.3. Alternating Direction Implicit Time Splitting

Next, using calculated diffusion coefficients we construct implicit approximations to t
problem

1af« 19 ,[_ afc 3 [ ofe

—9 =2 %2p, " ipfl+ LD D; f¢

v ot UZavv{”“aujL v }Jrag[“agjL J }
10, of*] af[_ afe
— — |v?D, — | Dgy—| . 34
+v28v[v Eas}rag[éav} (34)

The dimensionless factgr* gives the value of the the relative strength of the collision:
in the dimensionless form,

_ 4nZje'n,S

m22v)* ’

o

y (35)

wheren,, is the density of the particles. All derivative operators in (34) are represented
a matrix form and the complete operator in the right hand side is described by the f
matricesD”, D¢, D**, andD"¢, where for instanc® x V matrix D/} is given by

\ 2 2

v Vs
Djj () = _ dic dj—5 Dun (v, &) + dj 5 Do, )
k=0 i i

and X x X matrix ij is

X
D;j () = _ dicd Dee (v, &) + dfj De (u1, £)
k=0



SPECTRAL COLLOCATION 567

with dj and dfk representing the corresponding derivative collocation matrix defined
(22).V and X represent the number of collocation points in velocity and angle variable
The mixed derivative term however will always be represented in explicit form

vVooX v2
szfﬁd}i |:D$v(viyél)+v_§DvE(Ukvél) fd”,

k=0 1=0 !

where we dropped index numbering plasma species herefi}’imme value of the dis-
tribution function at time labeled andith collocation point along the velocity, andh
collocation point along the angle varialgle

iV =ft=th,v=1.& =§).

This explicit representation in the cases where large derivatives occur during the evolu
of the plasma can potentially lead to numerical instabilities [18]. In such cases differ
representations may be required with an appropriate preconditioner matrix.

Using the above matrix representation of the kinetic equation we construct a two-s
implicit scheme for updating vectdt); to the next fractional time stet;'j‘*l. First an ADI
(alternating direction implicit) step implicitly accounts for velocity derivatives

fi§n+1/2) )43 Z D ' (v, EJ)f(nH/z)

X
= "+ 25 |3 Dl 60
k=0
\% X
+> ) did; {ng(v. 6+ K Dvg<vk s.>} fkﬂ”)] (36)
k=0 1=0 '

and the second step implicitly accounts for angle derivatives

s ZDJk(u.,sm.k+1

k=0
= i 2 ZDka.,sk)f”“/z
\Y X
+>°) did; [ng(v.,sw K Due (v §.>} (””/2)]. (37)
k=0 1=0 '

These two equations are in the form of linear algebraic systems

\%
Z ATiTP =2 B (f7°"9).  forp=1/2.1 (38)

Matrix inversion is the most computationally complex part of the code, which in genel
requiresN® operations folN x N matrix. For sparse grids, with the number of collocation
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points less than 100, Eq. (38) can be efficiently solved by the direct inversion methi
For larger number of collocation points, iterative methods of solution are more efficie
In that case it is more appropriate to combine velocity and angle fractional steps i
one step. This has the advantage of allowing implicit representation for mixed derivat
terms. The work on development of iterative solvers with appropriate preconditioners
the Fokker—Planck equation with the Coulomb collisional operator is planned for the n
future.

The order of approximation in velocity variables is spectral, higher than the number ofg
points. Practically the accuracy of approximation is limited only by round-off computation
errors. Therefore the first-order finite-difference approximation in time of the ADI methc
is the limiting factor for overall accuracy of the method.

Matrix A;; also accounts for boundary conditions. For instance, on the first fractior
time step the boundary condition

of _
v
is enforced. In terms of the collocation derivative this condition becomes

N
>t =0
j=0

whered} is a first derivative matrix for the velocity variable. Thus in order to account for th
boundary condition we just replace the entries in the magix(which are in fact singular)
by do; and the right hand side by 0. Note how naturally the spectral collocation meth
treats the boundary condition.

Moreover, the conservation laws can be enforced in the solution. For instance, Eq.
conserves particle density or the integral

0, atv =0

/ f (uyu>du = const
0

This can be approximated as

N N

ij fPy2 = Zwi frrP-1/2,2
J J J J

j=0 j=0

in the case when the distribution function does not depend on the angle variable. We
enforce the conservation law by again replacing one of the rows, let's s&ytthiew, of
matrix Ayj with w; vj2 and the right hand side then is replaced by

N

en. 2
Do wiffl.
0

The appropriate place for such replacement is at the lower velocity end, i.e., at small va
of k. The distribution function is large there and also collocation points are more der
on the grid. Therefore, the necessary correction to the solution is affected with smal
relative change of the solution. In general, this procedure is not required for the spec
collocation method. However, we use it as an additional testing tool in one-dimensio
problems.
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When matrixA;; has been constructed, system (38) is being solved by LU decompositi
Similarly the boundary conditions for the second fractional step (36) are enforced

of
% =
2.3.1. Fractional time step accounting for spatial convectiolm an exactly similar way
the optional spatial derivative term can be added. The corresponding operator again ce
represented in matrix form using derivative mattixdefined on the collocation grid along
the spatial coordinate,

0, atv = 0.

Disj (v, &m) = &mui disj (39)

with the boundary conditions specifiedsat —1 ands = 1. Using this matrix representation
the third fractional step is added with implicit inclusion of the spatial derivative and explic
account of remaining operators inand&. Explicit contribution of the spatial derivative
should also be added to the previous fractional steps.

3. NUMERICAL RESULTS

We applied the spectral collocation method to a couple of simple but interesting proble
in order to test the algorithm. The code was implemented in C++ and run on a Penti
200 MHz computer. Average time required for performing one fractional time step
velocity space on the grid with 33 collocation points was of the order of 100 s. The numeri
complexity of the code is determined by matrix inversion at the BidsFor the sparse grid
used in the tests this does not represent a technical problem. For grids largeiSihéme
iterative solution techniques will reduce computational cost considerably.

3.1. Is the Overrelaxation Real?

As a first application of the spectral collocation code for (1) with exact collisional oy
erator we solved the problem of relaxation of the distribution function whidh=a is
close to the delta function in the velocity variable, as in [15]. Apart from giving a cles
opportunity for testing the algorithm this particular problem has been reported to hav
rather interesting property. In [15] the relaxation of the initial distribution in the spherical
symmetric case exhibited the “overrelaxation” of the distribution function in the vicinit
of v =0. By overrelaxation we mean that the distribution functiom at0 became larger
than the corresponding equilibrium stationary Maxwellian distribution. However, the fin
stage, true equilibrium, was not reproduced in [15]. The reason for that is not specified in
paper. The absence of overrelaxation in fact has been reported earlier, for example, in

We let the initial distribution take exactly the same form as in [15]

f(v) = exp(—10(v/0.3 — 1)?)

and followed the evolution of the distribution function in time. Initially the relaxation chatr
acter was quite similar to that reported in [15], see Fig. 1; however, the “overrelaxatic
phenomenon was not observed, as itis clear from the time profile of the distribution funct
value at = 0in Fig. 2. Instead, the distribution function monotonically approached equilil
rium Maxwellian everywhere in velocity space. It should be noted that in this calculatio
we enforced density conservation in the algorithm.
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FIG. 1. The evolution of the initial distribution function shown with time steps 20 in dimensionless units. |
can be seen as evolution enters a very slow phase after a period of relatively fast relaxation.

Thisresultisin good agreement with finite-difference calculations of [1]. Special attenti
in this work has been paid to ensure monotonicity of the entropy decay. In order to ch
how this property is accounted for by the spectral collocation code we plot the evolution

the entropy functional
H :/ f(v)In f(v)v2dv
0

in Fig. 3. As expected, entropy is a smooth decreasing function of time and is in ga
agreement with calculations in [1].

We tried to implement for spherically symmetric problem (1) the explicit algorithn
outlined in [15] and also failed to reproduce the overrelaxation phenomenon. In additi
to being extremely slow because of the stability condition imposed by the explicit scher
numerical results show that the density starts to accumulate at the times corresponding t

0.02

0.015 |

0.01

F(0)

0.005 |

0 500 1000 1500 2000 2500
Time in dimensionless units

FIG. 2. The evolution of the distribution function valuewat 0 clearly demonstrates the monotonic behavior
with no sign of the overrelaxation at small velocities.
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FIG. 3. The evolution of the entropy function&l (t) in time.

overrelaxation appearance. The typical number of time step required to follow the evolut
of the distribution function up to the times when distribution approaches Maxwellian
dictated by the stability condition of the explicit scheme is large, of the order®fTts

it is natural to suggest that the overrelaxation seen in the explicit algorithm can be cat
by numerical accumulation of the error of the approximation of the density and enel
integrals of the system. Note that we were not able to reproduce exactly the algorithm L
in [15] because some details of the implementation are not given in the paper, such a:
way in which the boundary conditions where implemented.

Our implicit algorithm is not sensitive to the value of the time stehe stationary
distribution, at time& = 2500, is very close to Maxwellian, as can be seen in Fig. 4, whe
the difference between the distribution function and the corresponding Maxwellian (i
the same density and energy of the distribution) is plotted. This plot also shows that
difference between the Maxwellian and relaxed distribution has not yet completely vanist
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-3e-05 |/
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0 0.5 1 1.5 2
v

FIG. 4. The difference between the distribution function at timee2500 and a true stationary Maxwellian
solution shows that relaxed distribution very slowly approaches the stationary solution.
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FIG. 5. The high energy end of the distribution function at titne 2500 and true stationary Maxwellian
solution shows that the high energy part is not resolved by the spectral collocation.

there are still less particles in the region of small velocities and some overabundanc
particles is still present at the location of the initial distribution functios; 0.3.

The results indeed reveal a very high accuracy of the spectral collocation. Note that t
are results of the integration of the time dependent problem with relatively large time s
7 =0.1 with a 33-point grid, orAv = 0.06 for an equivalent finite difference spatial step.
However, there is a limitation. Figure 5 shows the high energy end of the relaxed distribut
and corresponding Maxwellian. It is clear that the high energy part of the distribution
in fact not resolved. Although the absolute value of the error is of the order of machi
precision, the relative error is large and leads to significant loss at high energies. Thi
because of the global nature of the spectral methods in general: all available informat
the distribution function at all collocation points, is used to approximate derivatives a
integrals of the distribution function at any given point. As a result the same numeri
error applies to the regions where the distribution function is very small and to the regic
where the distribution function is large. Thus in order to increase the resolution of t
distribution function where it is small in magnitude one has to decrease the computatic
round off errors, i.e., increase the precision of floating point numbers used in calculatic
Another solution of this problem can be attempted when some additional information
available. For instance in this simple relaxation problem the density and temperature
the distribution are constant and this can be used to factor out the exponential depend
at large energies. This approach naturally suggests the use of Laguerre polynomial
a basis for orthogonal expansion and collocation. In addition to providing more unifor
approximation this approach also allows us to define the grid in energy corresponding
the semi-infinite region, as Laguerre polynomials are defined on the semi-infinite inter
[7, 9]. There are, however, additional technical problems arising in numerical evaluatic
of the Laguerre polynomials [7] and for this reason we postponed research in this direc
for the future.

3.2. Superthermal Heating

It is anticipated that the main application for a highly accurate Fokker—Planck equati
solver will be in the area of interactions of the plasma with collective oscillations. T
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self-consistent picture of the plasma waves and particles requires accurate modeling c
electromagnetic properties and the collisional effects in the plasma. One important typ
such collective effects is a heating of the plasma as a result of interaction with nonther
electromagnetic waves.

We have tested the spectral collocation algorithm on the simple case of plasma h
ing suggested in [8]. The superthermal radiation field is shown to enhance the diffus
coefficients in velocity space by the additive factor

A/v.

In[8] it was noted that this particular form when used in the linearized version of the Fokke
Planck equation (1) enforces the “stationary” solution which is a power-law distributic
at large energies. Recently this same idea was exploited in [14] to show that the so-ce
kappa-distribution can be expected as a consequence of the turbulence of whistler
plasma waves.

However, as was pointed out in [9], the immediate consequence of the nonthermal
fusion is a heating of the distribution function. As a result no stationary solution exists a
the long time evolution solution should rather be attempted in the form of a self-simil
solution. It can be shown then that self-similar solution in fact is the exponential

exp(—v®)

for the particular form of the nonthermal diffusion coefficient suggested in [8]. The wid
of this distribution is increasing in time and as a result of the overall decrease of the t
diffusion coefficient at large velocities, the high energy tail always remains undevelor
even in comparison to the Maxwellian distribution.

These aspects are clearly seen in the numerical results shown in Fig. 6. The initial
tribution function is taken in the same form is in the previous test problem. The diffusi
coefficient was augmented by the terrtd@l1/v. After sufficient time the distribution func-
tion approaches the self-similar form. The Maxwellian distribution for the same dens
and energy content is also shown. Clearly the self-similar solution is not a Maxwellic
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0 . . . . . . e
0 02040608 1 1.2141.61.8
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FIG. 6. As a result of the interaction with the nonthermal radiation field a self-similar solution is forme
which is quite different from Maxwellian.



574 KHABIBRAKHMANOV AND KHAZANOV

0.001
‘\~E|\/|(V)
0.0001 *

=
L

1e-05 |

1e-06 :

0 1 2 3 4 5 6 7
A

FIG.7. Using the logarithmic plot against we clearly see that the self-similar asymptotic solution is indeed
very close to the scaling given by the analytical solution(ex3).

The logarithmic plot against® in Fig. 7 shows that the self-similar solution is very close
to exp(—v®) scaling. There is no doubt that the power-law distribution cannot be produc
by simple nonthermal diffusion. In order to force the power-law solution in the syste
with nonthermal diffusion the minimum requirement is to provide the energy loss son
how at exactly the same overall rate as heating but differently distributed over the veloc
space. The problem then becomes similar to the determination of energy cascade
Kolmogoroff-Obukhof type spectra.

4. CONCLUSIONS

The first test results of the implementation of a high accuracy spectral collocation mett
for the kinetic equation with the exact coulomb collisional operator were presented. The
plementation of the exact collisional operator in a spectral collocation algorithm is straig
forward. On the strong side the ability to incorporate the conservation properties of the oj
ator directly into the algorithm should be mentioned. This considerably increases reliabi
of the results as it addresses the most important properties of the system, as conserv
of the particle density and energy, from the physical point of view.

The high order spectral collocation approximation of the integro-differential operators
global. The derivatives at any collocation point are estimated using not only a few clos
points on the grid, as in conventional finite difference schemes, but also the informatior
all available collocation points is incorporated in the approximation. As a result, a higt
accurate approximation is achieved everywhere on the grid. However, this is also the n
drawback of the spectral collocation method. Because the approximation is uniform,
regions of the velocity space where the distribution function is exponentially small are u:
simultaneously with those from the regions where the distribution function is relatively larc
When the difference in the magnitude of distribution function becomes larger than numer
precision of the computer the significance of the small values of the distribution function
lost. Thus normally it is not possible to describe by a simple spectral collocation method
distribution function variations of many orders of magnitude. In that case it is necessar
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factor globally the distribution function by an appropriate function. In most cases it shot
be sufficient to factor exponential dependence which implies that Laguerre polynom

in
fo
of

the energy of the particle represent an attractive choice of the orthogonal polynon
r the spectral collocation. In addition to properly accounting for the exponential dec
the distribution function at large energies, this choice also makes use of the unbour

semi-infinite domain in energy variable [9].
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