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The spectral collocation method is used for numerical solution of the Fokker–
Planck equation with nonlinear integro-differential coulomb collisional operator. The
spectral collocation method in general gives superior results to the usually employed
finite difference method approximation. High order approximation of the integro-
differential operator by the spectral collocation is able to provide highly accurate
results on sparse grids. Approximation of the boundary conditions of the problem
is very straightforward and natural. The method is also capable of easily accounting
for the physically important conservation properties of the system. In this article
the details of the numerical implementation of the Fokker–Planck equation solver
with Coulomb collisional operator are discussed. Some test results are presented and
certain limitations of the implementation are discussed. The method is applied to the
problem of plasma heating by superthermal radiation. The self-similar solution is
obtained for this case. c© 2000 Academic Press
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1. INTRODUCTION

Detailed knowledge of the charged particle distribution function is very important in
many areas of plasma physics. It is quite common in applications to assume that the main
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body of the distribution function is a thermal equilibrium local Maxwellian function. When
the deviations of the distribution function from Maxwellian are small an appropriate lin-
earization procedure can be applied. This approach simplifies description of the plasma
significantly. Superthermal electrons in the Earth’s plasmasphere, for instance, usually are
described by including the linearized Coulomb collisional operator [10, 11] where it is
assumed that high energy particles are scattered only by the fixed background thermal pop-
ulation. However, in a great number of applications large deviations from local Maxwellian
can be developed. For example, in space plasma physics it is common to consider the re-
sponse of the plasma to the external forces in a collisionless regime. This means that the
characteristic times of the processes in the plasma are much shorter than normal collisional
times calculated assuming that distributions are local Maxwellian functions. Nevertheless
collisions are important on the longer time scales and are capable of completely redefining
the stationary state of the plasma. On the other hand the coulomb collisional relaxation rate
is well known to be highly sensitive to where in the velocity phase space the deviation from
Maxwellian occurs. For example, the response of low energy particles is much faster than
relaxation of high energy particles. In fact, the local coulomb relaxation rate is singular at
v= 0 and thus in a sense for low energy particles the coulomb collision is always a dominant
process.

Collisions of the charged particles in plasma are described by a complicated nonlinear
(quadratic in distribution function) integro–differential equation [17]. The rate of the col-
lisional relaxation is quite sensitive to the local, in the velocity phase space, deviations of
the distribution function from equilibrium Maxwellian. The fine structure of the relaxation
often becomes important in application problems. For instance, the particle loss rates of the
trapped particles in the fusion devices, or in natural magnetic confinement of the planetary
magnetospheres, are very sensitive to the local gradients of the distribution function in the
velocity space. It is therefore important to have a tools for the exact description of the
Coulomb collision effects.

The finite difference approximation of the full Coulomb collisional operator was devel-
oped, for example, in [12]. Special techniques have been developed recently to improve the
accuracy of finite difference approximations [1, 2, 5, 6, 18]. The Legendre series expan-
sion, originally proposed in [17] for the reduction of the collisional operator to the form
of Fokker–Planck operator, was used to represent the angular dependencies in a spherical
system of coordinates in the velocity space. This fact is a main motivation for the imple-
mentation of the collisional operator by the spectral collocation method [3, 7]. In addition
to being consistent with the Legendre polynomial expansion of expressions for the Fokker–
Planck coefficients, the spectral collocation method generally provides superior high order
approximation and allows us to obtain highly accurate results on much sparser grids than
the finite difference methods. There are of course certain limitations of the method relevant
for approximation of the collisional operator which we would like to discuss in this report
along with the details of implementation.

2. THE FOKKER–PLANCK OPERATOR

We consider characteristic time scales much longer then gyroperiod and characteristic
spatial scales much larger than gyroradius of the particles. Under these conditions the kinetic
equation reduces to the so-called guiding center approximation which allows us to exclude
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azimuthal angle dependence in the kinetic equation [4]

∂ f α
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+ ξv ∂ f α

∂s
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∂ ln B
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∂ f α

∂ξ
= L̂( f α), (1)

where distribution functionf α(v, ξ, s, t) of the plasma speciesα depends upon the velocity
v, cosine of the pitch-angleξ , spatial variablesalong the magnetic field line with the strength
B, as well as timet . The second term in the left hand side describes convection, and the
third term is responsible for magnetic “focusing” in a nonhomogeneous magnetic field due
to the conservation of the magnetic moment, or the first adiabatic invariant of the particle.
The operator in the right hand side includes terms in addition to the simple transport effects.
In the present paper we will consider in detail only the coulomb collisional operator in its
exact form as derived in [17].

Equation (1) can be transformed into the conservation form by the change of dependent
variable according tof α = FαB
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Here we took into account that the collsional operatorL̂ is the quadratic functional of the
distribution function.

The expression for the coulomb collisional operator in the appropriate variables was
given in [17]. We will use it in its equivalent conservation form as
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Here, collisional strength is defined by

0α = 4πZ4
αe4

m2
α

(4)

and Fokker–Planck coefficients can be expressed as
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using Rosenbluth’s potentialsgα(v) andhα(v)

Gα(v) =
∑
β

Z2
β

Z2
α

ln3αβgβ(v) (10)
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The Rosenbluth’s potentials integral definitions (11) and (13) are equivalent to the Poisson
problems

1vg
β = 2hβ, 1vh

β = −4π f β (14)

with the distribution function serving as a source. In spherical velocity coordinates the
Laplacian is
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Thus the differential representation (14) immediately shows partial cancellation of terms in
(6) and (9) where only

Hα(v) =
∑
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will appear in coefficientsDv andDξ

Dv = −∂Hα

∂v
, Dξ = −1− ξ2
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∂Hα

∂ξ
. (15)

In fact the most complicated entries of the Fokker–Planck coefficients have been reduced to
a simple functional of potentialHα only. Thus “friction” in velocity space has a relatively
simple form in terms of Rosenbluth potentials. This fact for instance has been overlooked
in [12], in their finite difference implementation of the Coulomb collisional operator. Sim-
plification is considerable and obviously helps to avoid quite a large amount of unnecessary
extra calculations. Moreover, the error of nonperfect numerical cancellation can potentially
contribute to the round-off error buildup in the algorithm.

Equation (1) for each species has to be solved together with initial conditions

f α(s, v, ξ, t = 0) = 9α
0 (s, v, ξ) (16)

and is subject to boundary conditions at magnetically conjugate points in the atmosphere
where the main source of energetic photoelectrons is operating

f α(s= −S, v, ξ, t) = 9α
+(v, ξ, t), if ξ > 0; (17)

f α(s= +S, v, ξ, t) = 9α
−(v, ξ, t), if ξ < 0. (18)
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We choose some characteristic velocity of the problem 2V , which normally will be equal
to the highest velocity of the particle used in simulations on a bounded interval, so that
v ∈ [0, 2V ]. The characteristic spatial length is natural to set equal to the length 2Sof the
magnetic tube line from one hemisphere to another, from−S to S. This choice defines the
characteristic time of the problemτ as

τ = 2S

2V
.

We change to dimensionless variables in (1)

t → t

τ
, v→ v

V
− 1, s→ s

S
.

This particular scaling is motivated by the spectral collocation method we use for dis-
cretization of the problem ins, v, andξ , which we describe in some detail in the next
section.

Equation (1) is approximated by the spectral collocation method [7].

2.1. Spectral Collocation

The physical domain is mapped into [−1, 1], the region where normally bounded orthog-
onal polynomials are defined. The set of orthogonal polynomials is chosen [7, 3]. We will
be using Legendre polynomialsLn(x) simply because the pitch angle variable is treated
in a more simple way in the Coulomb collisional operator in that case. Other sets can be
used for spatial and velocity variables. The grid is defined at the so-called Gauss–Lobatto
points. Given a degree of the approximating polynomialN the Gauss–Lobatto pointsηi for
i = 0 . . . N are defined asN − 1 zeros of the derivative ofL N(x) plus two end points−1
and 1.

Functionp(x) is approximated as theNth order polynomial

p(x) =
N∑

k=0

ckLk(x). (19)

The ck’s are called the Fourier coefficients ofp(x) with respect to the orthogonal basis
Lk(x). If we know the function’s valuespi = p(ηi ) at the Gauss–Lobatto points, there is
a one-to-one correspondence between the set ofci and pi . The Gauss–Lobatto weightswi

can be defined to approximate the integral

∫ 1

−1
p(x) dx =

N∑
j=0

pjw j . (20)

This is the well knownNth order Gaussian quadrature formula. The important fact about
this approximation can be proved: formula (20) is true (exact) for any polynomialp(x) of
the order less than 2N − 1.

This formula is the basis for high accuracy numerical integration and is widely used in
numerical computations. The formula (20) can be used for computing Rosenbluth potentials.
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For differential equations approximation a similar high accuracy representation for the
derivative can be obtained. From (19)

p′ =
N∑

k=0

ckL ′k =
N∑

k=0

c(1)k Lk. (21)

This can be transformed into physical space in the form

p′(ηi ) =
N∑

j=0

di j p(η j ). (22)

Thus the derivative operator in the vector spacepk is equivalent to matrix multiplication.
Derivative matrix entriesdi j are completely defined by the type and degree of orthogonal
polynomial. It is important that formula (22) gives exact derivatives at the node points for
any p(x) which is a polynomial of degree less thanN.

Using (22) on the nonuniform grid defined by Gauss–Lobatto points we can construct
high accuracy approximation for integro-differential operators. The resulting linear system
is dense. As a result direct (LU decomposition) or iterative methods must be used for
solving the system of equations forpk’s. However, due to the relative high accuracy of
the approximation the number of nodes can be significantly reduced in comparison to the
conventional finite difference methods.

The Gauss–Lobatto grid has a nice property for our problem: it is denser to the ends of the
interval, at|x| =1, where in the case of the pitch angle we expect the distribution function
of untrapped particles to concentrate due to the highly nonuniform magnetic field. In the
case of the spatial variable along the magnetic field tube, grid points tend to concentrate at
the lower altitudes, where most of the interesting physics is happening.

The common problem for the spectral method is due to the fact that discontinuous func-
tions in general are poorly represented by the truncated Fourier series (19). This property
is known as a Gibbs phenomenon: oscillations amplitude of the approximating polynomial
in the neighborhood of the point of discontinuity stays bounded; it does not decrease as
N increases. This problem is not serious for the parabolic systems which normally tend to
produce smooth solutions even for initially discontinuous functions. It was shown that even
for hyperbolic systems the Gibbs phenomenon is not a matter of great concern. It does not
the change the dynamics of the solution but is a result of an attempt to accurately represent
discontinuity at the given discretization level. Discontinuity is represented by the two–three
points on the grid and is much better resolved than by normal finite difference (FD) schemes
[12]. The FD approximations tend to introduce numerical diffusion and viscosity which has
an irreversible effect on the long-term solution.

The Gibbs phenomenon can be excluded from the solution for cosmetic purposes of the
final solution for better visualization of the result, or it can be done all the way along the
solution process. The natural way to do this is to filter out the aliased high harmonics of
the solution. Note however that sometimes this can have an undesirable effect. As a result of
filtering not only the oscillation amplitude is reduced but also the width of the discontinuity
is increased. Thus, for the problems where true location of the discontinuity and the effects
of the width of the transition are important it may be important to keep all frequency spectra
unchanged.
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2.2. Time Discretization

For the time discretization, the time splitting or fractional steps method [16] is used. We
discretize each operator in space, pitch angle, and particle velocity separately and for each
time step advance distribution function in time using a separate operator sequentially. This
modularized approach is very flexible in the sense of adding new physics into the system.
The main disadvantage is that even if each operator separately is approximated by a stable
scheme, we cannot allow very large time steps. Only in the limit of small time steps one can
expect that results of sequential time steps to be close to the actual evolution of the system.
In the case of nonlinear problems, as in the approximation of the Coulomb collisional
operator, large time steps can even destabilize the resulting scheme. This disadvantage in
our approach is greatly compensated for by the high accuracy approximation of all the
operators involved.

One full time step includes four operations: calculation of the current values for the
Fokker–Planck coefficients and three ADI steps accounting for evolution in space, velocity,
and angle variables. We give details of implementation for each step below.

2.2.1. Calculation of Fokker–Planck coefficients.For evaluation of the diffusion coef-
ficients as suggested in [17] we use expansion in terms of Legendre polynomials in the pitch
angle variable

f α(v, ξ) =
∞∑

n=0

fn(v)Pn(ξ), (23)

g(v, ξ) =
∞∑

n=0

gn(v)Pn(ξ), (24)

h(v, ξ) =
∞∑

n=0

hn(v)Pn(ξ). (25)

Calculation of spectral coefficients in (23)

fn(v) = 2n+ 1

2

∫ 1

−1
f α(v, ξ)Pn(ξ) dξ (26)

takes advantage of high accuracy Guass–Lobatto quadrature according to (20).
After using identity (27)

d

dξ
(1− ξ2)

d Pn(ξ)

dξ
+ n(n+ 1)Pn(ξ) = 0, (27)

the Poisson equations (11) and (13) and the boundary conditions become

∂

∂v
v2∂hn

∂v
− n(n− 1)hh = − fn,

∂hn

∂v

∣∣∣∣
v=0

= 0,

(28)

h0(v = 0) =
∫ ∞

0
f (u)u du,

hn(v = 0) = 0, if n 6= 0
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∂

∂v
v2∂gn

∂v
− n(n− 1)gh = 2hn

∂gn

∂v

∣∣∣∣
v=0

= 0,

(29)

g0(v = 0) =
∫ ∞

0
f (u)u3 du,

gn(v = 0) = 0, if n 6= 0.

These equations can be solved analytically using Green’s function of the linear differential
operator in (27) and (28) as suggested in [17], and this procedure was followed in finite
difference implementation [12]

hn(v) = 4π

2n+ 1

[∫ v

0
du fn(u)

un+2

vn+1
+
∫ ∞
v

du fn(u)
vn

un−1

]
(30)

gn(v) = 4π

1− 4n2

[∫ v

0
du fn(u)

un+2

vn−1

(
1− 2n− 1

2n+ 3

u2

v2

)

+
∫ ∞
v

du fn(u)
vn

un−3

(
1− 2n− 1

2n+ 3

v2

u2

)]
. (31)

The numerical evaluation of the Rosenbluth potentialshn and gn according to Green’s
function solutions (30) and (31), however, bears a large numerical error. This can be clearly
seen, for example, in the casen= 0 whenh0 degenerates into a one-sided indefinite integral
from u= 0 tou= v and for smallv only very few points on the grid are used for evaluation
of the integral. As a result high order Gaussian quadrature formulas become unusable and
lower order integration schemes lead to the lose of spectral accuracy provided by spectral
collocation. Therefore, instead of numerical evaluation of integrals (30) and (31), we solve
directly boundary value problems (28) and (29) by the spectral collocation method, which
ensures spectral accuracy. In terms of efficiency of calculations in the case of solving (28)
and (29) by direct matrix inversion, the number of arithmetic operations is of the same order
as numerical quadrature for evaluation of integrals (30) and (31). There are also potentially
more efficient methods for solving differential equations (28) and (29); for example, iterative
methods can be much more efficient on large grids. At the present time only a direct solution
(by LU decomposition) has been implemented.

In our algorithm the differential operator in the left hand sides of (28) and (29) including
the boundary conditions is approximated as a matrix multiplication operator using the
spectral collocation method described above. The inverse of the matrix is calculated at
the initialization stage of the program and stored in the memory. Thus the calculation of
the spectral coefficients of the Rosenbluth potentials requires only matrix multiplication
for each harmonicn. In order to obtain the Fokker–Planck coefficients according to (5),
(7), (8), (15) the differentiation over velocityv is done numerically using the spectral
collocation derivative matrix. The differentiation over velocity can be done before or after the
calculation of the inverse Legendre transform according to (23). Clearly it is more efficient
to differentiate the potential once in velocity space, rather than to performn differentiations
of the spectral coefficientsgn. As for the differentiation inξ , this can be done analytically
before the inverse transform using the properties of the Legendre polynomials given by (27)
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and

(1− ξ2)
d Pn(ξ)

dξ
= n(n+ 1)

2n+ 1
(Pn−1(ξ)− ξPn+1(ξ)) , (32)

and

(2n+ 1)ξPn(ξ) = (n+ 1)Pn+1(ξ)+ nPn−1(ξ). (33)

This step again avoids extra computational effort related to the numerical differentiation
of the Fokker–Planck coefficients with respect toξ in the algorithm. The numerical imple-
mentation demonstrated that this procedure gives a highly accurate representation of the
Fokker–Planck coefficients.

The update of the coulomb collision Fokker–Planck coefficients using current values for
the distribution function is one of the most computationally intensive parts of the algorithm.
The whole procedure however is nonrecursive and all stages are basically represented as a
matrix multiplication. This makes the algorithm highly vectorizable.

In the simplest time factorization scheme these coefficients are used throughout all the
fractional time steps. This is justified by the observation that normally diffusion coefficients
change much slower than the distribution function itself [13]. This limitation is dictated by
the high computational cost of the diffusion coefficients evaluation.

2.3. Alternating Direction Implicit Time Splitting

Next, using calculated diffusion coefficients we construct implicit approximations to the
problem

1
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[
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∂ f α
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]
+ ∂

∂ξ
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Dξξ
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+ Dξ f α

]
+ 1

v2

∂

∂v

[
v2Dvξ

∂ f α

∂ξ

]
+ ∂

∂ξ

[
Dξv

∂ f α

∂v

]
. (34)

The dimensionless factorγ α gives the value of the the relative strength of the collisions
in the dimensionless form,

γ α = 4πZ4
αe4nαS

m2
α(2V)4

, (35)

wherenα is the density of the particles. All derivative operators in (34) are represented in
a matrix form and the complete operator in the right hand side is described by the four
matricesDv, Dξ , Dξv, andDvξ , where for instanceV ×V matrix Dv

i j is given by

Dv
i j (ξl ) =

V∑
k=0

dvik dvk j

v2
k

v2
i

Dvv(vk, ξl )+ dvi j
v2

j

v2
i

Dv(v j , ξl )

andX × X matrix Dξ
i j is

Dξ
i j (vl ) =

X∑
k=0

dξikdξk j Dξξ (vl , ξk)+ dξi j Dξ (vl , ξ j )
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with dvik anddξik representing the corresponding derivative collocation matrix defined in
(22). V andX represent the number of collocation points in velocity and angle variables.
The mixed derivative term however will always be represented in explicit form

V∑
k=0

X∑
l=0

dvikdξj l

[
Dξv(vi , ξl )+ v

2
k

v2
i

Dvξ (vk, ξl )

]
f (n)kl ,

where we dropped index numbering plasma species here, andf n
i j is the value of the dis-

tribution function at time labeledn and i th collocation point along the velocity, andj th
collocation point along the angle variableξ ,

f (n)i j = f (t = tn, v = vi , ξ = ξ j ).

This explicit representation in the cases where large derivatives occur during the evolution
of the plasma can potentially lead to numerical instabilities [18]. In such cases different
representations may be required with an appropriate preconditioner matrix.

Using the above matrix representation of the kinetic equation we construct a two-step
implicit scheme for updating vectorf n

vξ to the next fractional time stepf n+1
i j . First an ADI

(alternating direction implicit) step implicitly accounts for velocity derivatives

f (n+1/2)
i j − γ τ

2

V∑
k=0

Dv
ik(vk, ξ j ) f (n+1/2)

k j

= f (n)i j +
γ τ

2

[
X∑

k=0

Dξ
ik(vi , ξk) f n

ik

+
V∑

k=0

X∑
l=0

dvikdξj l

[
Dξv(vi , ξl )+ v

2
k

v2
i

Dvξ (vk, ξl )

]
f (n)kl

]
(36)

and the second step implicitly accounts for angle derivatives

f n+1
i j − γ τ

2

X∑
k=0

Dξ
jk(vi , ξk) f n+1

ik

= f n+1/2
i j + γ τ

2

[
V∑

k=0

Dξ
jk(vi , ξk) f n+1/2

ik

+
V∑

k=0

X∑
l=0

dvikdξj l

[
Dξv(vi , ξl )+ v

2
k

v2
i

Dvξ (vk, ξl )

]
f (n+1/2)
kl

]
. (37)

These two equations are in the form of linear algebraic systems

V∑
j=0

Ai j f n+p
jl =

V∑
j=0

Bli j
(

f (n+p−1/2)
i j

)
, for p = 1/2, 1. (38)

Matrix inversion is the most computationally complex part of the code, which in general
requiresN3 operations forN × N matrix. For sparse grids, with the number of collocation
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points less than 100, Eq. (38) can be efficiently solved by the direct inversion method.
For larger number of collocation points, iterative methods of solution are more efficient.
In that case it is more appropriate to combine velocity and angle fractional steps into
one step. This has the advantage of allowing implicit representation for mixed derivative
terms. The work on development of iterative solvers with appropriate preconditioners for
the Fokker–Planck equation with the Coulomb collisional operator is planned for the near
future.

The order of approximation in velocity variables is spectral, higher than the number of grid
points. Practically the accuracy of approximation is limited only by round-off computational
errors. Therefore the first-order finite-difference approximation in time of the ADI method
is the limiting factor for overall accuracy of the method.

Matrix Ai j also accounts for boundary conditions. For instance, on the first fractional
time step the boundary condition

∂ f

∂v
= 0, atv = 0

is enforced. In terms of the collocation derivative this condition becomes

N∑
j=0

dv0 j fi j = 0,

wheredvi j is a first derivative matrix for the velocity variable. Thus in order to account for the
boundary condition we just replace the entries in the matrixA0 j (which are in fact singular)
by d0 j and the right hand side by 0. Note how naturally the spectral collocation method
treats the boundary condition.

Moreover, the conservation laws can be enforced in the solution. For instance, Eq. (34)
conserves particle density or the integral∫ ∞

0
f (u)u2 du= const.

This can be approximated as

N∑
j=0

w j f n+p
j v2

j =
N∑

j=0

w j f n+p−1/2
j v2

j

in the case when the distribution function does not depend on the angle variable. We can
enforce the conservation law by again replacing one of the rows, let’s say thekth row, of
matrix Akj with w j v

2
j and the right hand side then is replaced by

N∑
j=0

w j f n
j v

2
j .

The appropriate place for such replacement is at the lower velocity end, i.e., at small values
of k. The distribution function is large there and also collocation points are more dense
on the grid. Therefore, the necessary correction to the solution is affected with smallest
relative change of the solution. In general, this procedure is not required for the spectral
collocation method. However, we use it as an additional testing tool in one-dimensional
problems.
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When matrixAi j has been constructed, system (38) is being solved by LU decomposition.
Similarly the boundary conditions for the second fractional step (36) are enforced

∂ f

∂ξ
= 0, atv = 0.

2.3.1. Fractional time step accounting for spatial convection.In an exactly similar way
the optional spatial derivative term can be added. The corresponding operator again can be
represented in matrix form using derivative matrixds

i j defined on the collocation grid along
the spatial coordinate,

Ds
i j (vl , ξm) = ξmvl d

s
i j (39)

with the boundary conditions specified ats=−1 ands= 1. Using this matrix representation
the third fractional step is added with implicit inclusion of the spatial derivative and explicit
account of remaining operators inv andξ . Explicit contribution of the spatial derivative
should also be added to the previous fractional steps.

3. NUMERICAL RESULTS

We applied the spectral collocation method to a couple of simple but interesting problems
in order to test the algorithm. The code was implemented in C++ and run on a Pentium
200 MHz computer. Average time required for performing one fractional time step in
velocity space on the grid with 33 collocation points was of the order of 100 s. The numerical
complexity of the code is determined by matrix inversion at the costN3. For the sparse grid
used in the tests this does not represent a technical problem. For grids larger than≈50 the
iterative solution techniques will reduce computational cost considerably.

3.1. Is the Overrelaxation Real?

As a first application of the spectral collocation code for (1) with exact collisional op-
erator we solved the problem of relaxation of the distribution function which att = 0 is
close to the delta function in the velocity variable, as in [15]. Apart from giving a clear
opportunity for testing the algorithm this particular problem has been reported to have a
rather interesting property. In [15] the relaxation of the initial distribution in the spherically
symmetric case exhibited the “overrelaxation” of the distribution function in the vicinity
of v= 0. By overrelaxation we mean that the distribution function atv= 0 became larger
than the corresponding equilibrium stationary Maxwellian distribution. However, the final
stage, true equilibrium, was not reproduced in [15]. The reason for that is not specified in the
paper. The absence of overrelaxation in fact has been reported earlier, for example, in [1].

We let the initial distribution take exactly the same form as in [15]

f (v) = exp(−10(v/0.3− 1)2)

and followed the evolution of the distribution function in time. Initially the relaxation char-
acter was quite similar to that reported in [15], see Fig. 1; however, the “overrelaxation”
phenomenon was not observed, as it is clear from the time profile of the distribution function
value atv= 0 in Fig. 2. Instead, the distribution function monotonically approached equilib-
rium Maxwellian everywhere in velocity space. It should be noted that in this calculations
we enforced density conservation in the algorithm.
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FIG. 1. The evolution of the initial distribution function shown with time steps 20 in dimensionless units. It
can be seen as evolution enters a very slow phase after a period of relatively fast relaxation.

This result is in good agreement with finite-difference calculations of [1]. Special attention
in this work has been paid to ensure monotonicity of the entropy decay. In order to check
how this property is accounted for by the spectral collocation code we plot the evolution of
the entropy functional

H =
∫ ∞

0
f (v) ln f (v)v2 dv

in Fig. 3. As expected, entropy is a smooth decreasing function of time and is in good
agreement with calculations in [1].

We tried to implement for spherically symmetric problem (1) the explicit algorithm
outlined in [15] and also failed to reproduce the overrelaxation phenomenon. In addition
to being extremely slow because of the stability condition imposed by the explicit scheme,
numerical results show that the density starts to accumulate at the times corresponding to the

FIG. 2. The evolution of the distribution function value atv= 0 clearly demonstrates the monotonic behavior
with no sign of the overrelaxation at small velocities.
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FIG. 3. The evolution of the entropy functionalH(t) in time.

overrelaxation appearance. The typical number of time step required to follow the evolution
of the distribution function up to the times when distribution approaches Maxwellian as
dictated by the stability condition of the explicit scheme is large, of the order of 106. Thus
it is natural to suggest that the overrelaxation seen in the explicit algorithm can be caused
by numerical accumulation of the error of the approximation of the density and energy
integrals of the system. Note that we were not able to reproduce exactly the algorithm used
in [15] because some details of the implementation are not given in the paper, such as the
way in which the boundary conditions where implemented.

Our implicit algorithm is not sensitive to the value of the time stepτ . The stationary
distribution, at timet = 2500, is very close to Maxwellian, as can be seen in Fig. 4, where
the difference between the distribution function and the corresponding Maxwellian (for
the same density and energy of the distribution) is plotted. This plot also shows that the
difference between the Maxwellian and relaxed distribution has not yet completely vanished;

FIG. 4. The difference between the distribution function at timet = 2500 and a true stationary Maxwellian
solution shows that relaxed distribution very slowly approaches the stationary solution.
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FIG. 5. The high energy end of the distribution function at timet = 2500 and true stationary Maxwellian
solution shows that the high energy part is not resolved by the spectral collocation.

there are still less particles in the region of small velocities and some overabundance of
particles is still present at the location of the initial distribution function,v= 0.3.

The results indeed reveal a very high accuracy of the spectral collocation. Note that these
are results of the integration of the time dependent problem with relatively large time step
τ = 0.1 with a 33-point grid, or1v= 0.06 for an equivalent finite difference spatial step.
However, there is a limitation. Figure 5 shows the high energy end of the relaxed distribution
and corresponding Maxwellian. It is clear that the high energy part of the distribution is
in fact not resolved. Although the absolute value of the error is of the order of machine
precision, the relative error is large and leads to significant loss at high energies. This is
because of the global nature of the spectral methods in general: all available information,
the distribution function at all collocation points, is used to approximate derivatives and
integrals of the distribution function at any given point. As a result the same numerical
error applies to the regions where the distribution function is very small and to the regions
where the distribution function is large. Thus in order to increase the resolution of the
distribution function where it is small in magnitude one has to decrease the computational
round off errors, i.e., increase the precision of floating point numbers used in calculations.
Another solution of this problem can be attempted when some additional information is
available. For instance in this simple relaxation problem the density and temperature of
the distribution are constant and this can be used to factor out the exponential dependence
at large energies. This approach naturally suggests the use of Laguerre polynomials as
a basis for orthogonal expansion and collocation. In addition to providing more uniform
approximation this approach also allows us to define the grid in energy corresponding to
the semi-infinite region, as Laguerre polynomials are defined on the semi-infinite interval
[7, 9]. There are, however, additional technical problems arising in numerical evaluations
of the Laguerre polynomials [7] and for this reason we postponed research in this direction
for the future.

3.2. Superthermal Heating

It is anticipated that the main application for a highly accurate Fokker–Planck equation
solver will be in the area of interactions of the plasma with collective oscillations. The
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self-consistent picture of the plasma waves and particles requires accurate modeling of the
electromagnetic properties and the collisional effects in the plasma. One important type of
such collective effects is a heating of the plasma as a result of interaction with nonthermal
electromagnetic waves.

We have tested the spectral collocation algorithm on the simple case of plasma heat-
ing suggested in [8]. The superthermal radiation field is shown to enhance the diffusion
coefficients in velocity space by the additive factor

A/v.

In [8] it was noted that this particular form when used in the linearized version of the Fokker–
Planck equation (1) enforces the “stationary” solution which is a power-law distribution
at large energies. Recently this same idea was exploited in [14] to show that the so-called
kappa-distribution can be expected as a consequence of the turbulence of whistler type
plasma waves.

However, as was pointed out in [9], the immediate consequence of the nonthermal dif-
fusion is a heating of the distribution function. As a result no stationary solution exists and
the long time evolution solution should rather be attempted in the form of a self-similar
solution. It can be shown then that self-similar solution in fact is the exponential

exp(−v3)

for the particular form of the nonthermal diffusion coefficient suggested in [8]. The width
of this distribution is increasing in time and as a result of the overall decrease of the total
diffusion coefficient at large velocities, the high energy tail always remains undeveloped
even in comparison to the Maxwellian distribution.

These aspects are clearly seen in the numerical results shown in Fig. 6. The initial dis-
tribution function is taken in the same form is in the previous test problem. The diffusion
coefficient was augmented by the term 0.001/v. After sufficient time the distribution func-
tion approaches the self-similar form. The Maxwellian distribution for the same density
and energy content is also shown. Clearly the self-similar solution is not a Maxwellian.

FIG. 6. As a result of the interaction with the nonthermal radiation field a self-similar solution is formed
which is quite different from Maxwellian.
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FIG. 7. Using the logarithmic plot againstv3 we clearly see that the self-similar asymptotic solution is indeed
very close to the scaling given by the analytical solution exp(−v3).

The logarithmic plot againstv3 in Fig. 7 shows that the self-similar solution is very close
to exp(−v3) scaling. There is no doubt that the power-law distribution cannot be produced
by simple nonthermal diffusion. In order to force the power-law solution in the system
with nonthermal diffusion the minimum requirement is to provide the energy loss some-
how at exactly the same overall rate as heating but differently distributed over the velocity
space. The problem then becomes similar to the determination of energy cascade with
Kolmogoroff–Obukhof type spectra.

4. CONCLUSIONS

The first test results of the implementation of a high accuracy spectral collocation method
for the kinetic equation with the exact coulomb collisional operator were presented. The im-
plementation of the exact collisional operator in a spectral collocation algorithm is straight-
forward. On the strong side the ability to incorporate the conservation properties of the oper-
ator directly into the algorithm should be mentioned. This considerably increases reliability
of the results as it addresses the most important properties of the system, as conservation
of the particle density and energy, from the physical point of view.

The high order spectral collocation approximation of the integro-differential operators is
global. The derivatives at any collocation point are estimated using not only a few closest
points on the grid, as in conventional finite difference schemes, but also the information at
all available collocation points is incorporated in the approximation. As a result, a highly
accurate approximation is achieved everywhere on the grid. However, this is also the main
drawback of the spectral collocation method. Because the approximation is uniform, the
regions of the velocity space where the distribution function is exponentially small are used
simultaneously with those from the regions where the distribution function is relatively large.
When the difference in the magnitude of distribution function becomes larger than numerical
precision of the computer the significance of the small values of the distribution function is
lost. Thus normally it is not possible to describe by a simple spectral collocation method the
distribution function variations of many orders of magnitude. In that case it is necessary to
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factor globally the distribution function by an appropriate function. In most cases it should
be sufficient to factor exponential dependence which implies that Laguerre polynomials
in the energy of the particle represent an attractive choice of the orthogonal polynomial
for the spectral collocation. In addition to properly accounting for the exponential decay
of the distribution function at large energies, this choice also makes use of the unbounded
semi-infinite domain in energy variable [9].
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